
Algebra of Behavior Tables∗

Steven D. Johnson and Alex Tsow

Indiana University Computer Science Department
sjohnson@cs.indiana.edu

Abstract

A design formalization based on behavior tables was
presented at Lfm97. This paper describes ongoing
work on a supporting tool, now in development. The
goal is to make design derivation, the interactive con-
struction of correct implementations, more natural
and visually palatable while preserving the benefits
of formal manipulation. We review the syntax and
semantics of behavior tables, introducing some new
syntactic elements. We present a core algebra for ar-
chitectural refinement, including new notational con-
ventions for expressing such rules.
Keywords: behavior table, design derivation, for-
mal synthesis.

1. Introduction

Behavior table notation emerged out of case studies
in formal design derivation between 1985 and 1995.
The DDD transformation system [7] is based on func-
tional algebra. Behavioral expressions at the level
of algorithmic state machines [1] are represented by
recursive systems of function definitions, and archi-
tecture oriented implementations are represented by
recursive systems of stream expressions. In DDD,
these representations are manipulated as transforma-
tions on Scheme programs, so the expressions are also
executable.

The primary goal in our early case studies was to
interactively impose hardware architectures on algo-
rithmic specifications. As these studies became larg-

∗This research is supported, in part, by the National Science
Foundation under Grant MIP9610358.

er, a practice emerged of printing DDD expressions
in a tabular form, reminiscent of register transfer ta-
bles. The tables helped design teams visualize their
architectural goals so they could strategize about how
to accomplish them in the DDD algebra.

We began to contemplate using the tables more di-
rectly as formal objects, retargetting the DDD alge-
bra to operate on tabular representations. We believe
the tables are more perspicuous to practicing profes-
sionals who, it has been claimed, are put off by the
notation used in formal reasoning systems.

The rising visibility of tabular specification lan-
guages such as Tablewise [3], SCR* [2], and and-or
transitions in RSML [8], helped convince us to look at
behavior tables more seriously as a formalism rather
than merely as a visual aid. Subsequently, we have
undertaken to develop a tool for interactive design
derivation using them.

In this paper, we develop a core algebra for archi-
tectural manipulation. In the main, this algebra cor-
relates to the “structural” algebra of sequential sys-
tems, presented in [5]. Although the main purpose is
to lay the groundwork for tool implementation, one
ancillary contribution of this paper is its notational
conventions for stating the rules of the algebra, which
use table schemes to simplify quantification.

The conclusion lists additional topics and issues
entailed in the implementation effort. We extend the
term-level syntax presented at Lfm97 [6] to include
provisions for bounded indirection, additional algebra
for a simple kind of data refinement, and possible
extensions for verification.

2. Terms

Behavior tables are arrays of terms in a ground vo-
cabulary of constants and operations. We very briefly
review the terminology of first order structures then
introduce the extensions that are assumed in behav-
ior tables.

A first order structure describes a family of value
sets, A1, . . . , An, together with a collection of to-
tal functions, f1, . . . , fm, on these sets. With each
set Ai is associated a type symbol, τi,. There are
constant and operator symbols representing the func-
tions fi, and a distinct set of variable symbols. The
notation v: τi asserts that the variable v ranges over
values in Ai. The signature of an operator specifies
its domain and range, which in general are nested
products. The formula f : (τ1, (τ2, τ3)) → (τ4, τ5, τ6)
asserts that the operation f maps the product A1 ×
(A2 × A3) to the product A4 × A5 × A6. We shall
allow for multioutput operations, as suggested here,
whose output signatures are n-tuples.

A term is a variable, constant, or application,
f(T1, . . . , Tn), of an operation f to the terms Ti ac-
cording to the f ’s signature.

A structure becomes an equational algebra when
it is provided with a set E of equational identities
among terms (over a distinguished set of logical vari-
ables). E induces an equivalence relation; and we
write |=E s ≡ t to express the fact that s and t are
provably equivalent under E.

Certain additional features are assumed of al-
l structures used in behavior tables and are thus ab-
sorbed at the metalinguistic level.

• A sort Bool is assumed with constants true and
false and the identities of boolean algebra. Oper-
ations with range Bool are called tests.

• A don’t care constant is designated by ‘\’.

• Finite product (tupling) and projection opera-
tions of each type are assumed Projections are
denoted by sans-serif adjectives, 1st, 2nd, 3rd,
4th, 5th . . ., ith, An n-tuple is expressed as
a parenthesized series of n terms, (T1, . . . , Tn).
Projections applied to n-tuples can be simplified

at the syntactic level; for instance,

|= 2nd(T1, T2, T2) ≡ T2

• It is assumed that arbitrary finite sets of tokens
can be represented (e.g. by n-tuples over Bool).
We shall extend this idea to what Hoover calls a
finite logic [3], with which we associate a specific
selection operation, written

case s of
a1 : t1

...
ak : t1

The usual treatment of terms is extended for ex-
plicit multioutput operations. The definition of sub-
stitution on terms is adapted for multioutput opera-
tions by allowing nested lists of variables to serve as
substitution patterns. Such a list is called an identi-
fier.

Definition 1 An identifier is either a variable or
a nested list, (X1, . . . , Xn), of distinct identifiers,
meaning that they share no common variables.

Definition 2 The formula T [R/X] denotes a sub-
stitution of the term R for the identifier X in the
term T . The formula T [R1/X1, . . . , Rn/Xn] denotes
the simultaneous and respective substitutions of terms
Ri for identifiers Xi, i ∈ {1 . . n}. Substitution is de-
fined by induction on the language of terms. In the
base cases, constants are unchanged and for a vari-
able symbol u,

u[R/X] =

{
R if X = u
u if X 6= u

For applications and n-tuples,

f(T1, . . . , Tn)[R/X] = f(T1[R/X], . . . , Tn[R/X])

For nested identifiers, a simultaneous substitution
is done on the constituents:

T [R/(X1, . . . , Xn)] = T [1st(R)/X1, . . . , nth(R)/Xn]

In the last case, substitution of an n-tuple for an n-
element identifier simplifies to

T [(R1, . . . , Rn)/(X1, . . . , Xn)]
= T [R1/X1, . . . , Rn/Xn]

3. Syntax of behavior tables

Behavior tables are closed expressions whose terms
contain variables from three disjoint sets: I (inputs),
S (sequential signals, or data state), and C (combi-
national signals). Fix these sets for the remainder of
this section. We will write ISC for I ∪ S ∪ C and
SC for S ∪ C. We use the term “register” for an el-
ement of S, but this is a euphemism that should be
interpreted very abstractly. There is no assumption
that these variables denote finite values, nor are ta-
bles intended only for register-transfer specification.
The form of a behavior table is:

Name: Inputs → Outputs

Conditions Registers and Signals

...
...

Guard Computation Step
...

...

Inputs is a list of input variables and Outputs is a
set of terms over ISC, but without loss of generality,
assume O ⊆ SC. Conditions is a set P of predicates
over ISC, that is, finitely typed terms ranging over
finite types, such as truth values, token sets, etc.

The notion of term evaluation used here is stan-
dard. The value of a term, t, is written σ[[t]], where σ
is an assignment or association of values to variables.

Definition 3 A guard is a set of constants indexed
by a condition set P : g = {cp}p∈P . A decision table
D = [P,G], consists of a condition set and a an as-
sociated list of guards. We say g holds for an assign-
ment σ to ISC when, for each p ∈ P , either cp = \
or σ[[p]] = cp.

Following [3], we say a decision table is functional
when G describes a proper partitioning of the possible
assignments to ISC. In other words, the guards are
“consistent” and “complete”.

Definition 4 A computation step or action is a
set of terms, one for each register and signal: a =
{tv}v∈SC. An action table is a set of actions typical-
ly indexed by the guards of a corresponding decision
table.

i2

i1

i1x i2

go

a

b

done*

w

MULT:(go, a, b) → (done*, w)

go P (even? u) u v w done*

1 \ \ a b 0 P ∧ ¬go
0 1 \ \ \ w P ∧ ¬go
0 0 1 u÷2 v×2 w P ∧ ¬go
0 0 0 u÷2 v×2 w+v P ∧ ¬go
where P ≡ (zero? u) ∨ (zero? v)

Figure 1: Example of a behavior table

Definition 5 A behavior table for I → O consists
of a decision table, D, with guards G = {g1, . . . gn},
and an action table indexed by G, A = {tv,k | v ∈
SC and gk ∈ G}.

Figure 1 shows a shift-and-add multiplier, ex-
pressed as a behavior table. The timing diagram is
provided to explain the interface, with multiplication
performed within a full handshake.

4. Synchronous semantics

A behavior table [D,A] for O ⊆ SC denotes a rela-
tion between infinite input and output sequences. We
call these sequences streams because in prior work
we obtain a semantics by interpreting a table as a
(co)recursive system of stream-defining equations [7].
More directly, suppose we are given a set of initial val-
ues for the registers, {xs}s∈S and a stream for each
input variable in I. Construct a sequence of assign-
ments, 〈σ0, σ1 . . .〉 for ISC as follows:

(a) σn(i) is given for all i ∈ I and all n.

(b) For each s ∈ S, σ0(s) = xs.

(c) σn+1(s) = σn[[ts,k]] if guard gk holds for σn.

(d) For each c ∈ C, σn(c) = σn[[tc,k]] if guard gk
holds for σn.

The stream associated with each o ∈ O is
〈σ0(o), σ1(o), . . .〉. This semantic relation is well de-
fined if there are no circular dependencies among the
combinational actions {tc,k | c ∈ C, gk ∈ G}. The
relation is a function (i.e. deterministic) if decision
table D is functional. We shall restrict our attention
to behavior tables that are well formed in these re-
spects. In essence, well formedness reflects the usual
properties required of synchronous finite state ma-
chines.

To achieve well formedness, we constrain behavior
tables in two ways. First, we prohibit “combinational
feedback” in the actions. Given row k in the action
table {tv,k | v ∈ SC}, there is a natural dependence
graph with vertices corresponding to the signal names
and edges given by the relation: a → b iff a is a
subterm of tb,k. Checking for combinational cycles is
a straightforward depth-first search.

Even if the actions themselves do not contain com-
binational loops, the decision table can still induce
race conditions or metastable behavior. Consider the
following table fragment where r and c are registered
and combinational boolean signals:

B : I → O

r c* · · · r c* · · ·

0 0 0 1

0 1 0 0

1 0 1 1

1 1 1 1

Intuitively, if the system makes a transition into a
state where σn(r) = 0, then combinational signal a
will oscillate. Our semantics is not well defined in this
case: if cr = 0 and cc = 0 in some guard gk = {cp}p∈P
at timeslice n, then σn(c) = 1 by (d). Since gk no
longer holds at σn, some other guard gj = {dp}p∈P
in which dr = 0 and dc = 1 hold changes σn(c) back
to 0.

The race condition occurs in our example when
σn(r) = 1 and σn(c) = 0. Although one could argue
that σn is well defined, we shall prohibit this mode of
expression anyway, as it reflects a kind of transition
race.

To eliminate these scenarios, we constrain the pred-
icates of the decision table to use only registered vari-
ables and input signals. This way, no action can di-
rectly change the guard gk since the values of regis-
tered signals persist for the duration of the present
action (c).

In addition, we shall require a functional set of
guards, as noted earlier. This results in deterministic
and total behavior, for which the algebra presented
here is intended.

We think of behavior tables as denoting persisten-
t, communicating processes, rather than subproce-
dures. In other words, behavior tables cannot them-
selves be entries in other behavior tables, but instead
are composed by interconnecting their I/O ports.
Composition is specified by giving a connection map
that is faithful to each component’s arity. In our
function-oriented modeling methodology, such com-
positions are expressed as recursive systems of equa-
tions,

λ(U1, . . . , Un).(V1, . . . , Vm) where

(X11, . . . , X1q1) = T1(W11, . . . ,W1`1)
...

(Xp1, . . . , Xpqp) = Tp(Wp1, . . . ,Wp`p)

in which the defined variables Xij are all distinct,
each Tk is the name of a behavior table or other com-
position, and the outputs Vk and internal connec-
tions Wij are all simple variables coming from the
set {Ui} ∪ {Xjk}.

Valid systems must preserve I/O directionality, ex-
cluding both combinational cycles and output con-
flicts. Checking validity has two stages and is again
a graph problem:

1. For each behavior table let its inputs and outputs
be vertices, and let i → o when output signal o
combinationally depends on input signal i.

2. Add the following edges to the disjoint union
of the behavior table I/O graphs: o → i
when Tj(. . . , o, . . .) is the right hand side of
an equation where Tj ’s I/O signature is Tj :
(. . . , i, . . .)→ O.

A legitimate connection network exists when this
graph has no cycles.

Provided they are well formed, deterministic sys-
tems are readily animated in modeling languages that
allow recursive stream networks to be expressed [4].
As long as each register has an initial value, the
streams are constructed head-first as a fixed-point
computation. Translation to both cycle-based and
event-based simulation languages is also relatively s-
traightforward, as long as the systems are expressed
over the concrete data types these tools recognize.

A synchronous semantics is simple and suited to
the clocked implementation models most high-level
synthesizers use. In fact, behavior tables will acquire
a range of semantics, depending on their applications,
just as HDLs and programming languages do. Even
with a variety of interpretations, their inherent struc-
ture helps reduce the mathematical bookkeeping that
often obscures semantic definitions.

5. Behavior Table Algebra

The collection of transformation rules presented in
this section applies to architectural refinement. This
set is not claimed to be complete nor is minimal in
any mathematical sense. At this stage, our principal
object is to build a set of rules that is robust enough
to serve as a core rule set for tool implementation.
mathematical efficiency is a secondary concern, for
the moment.

5.1. Notational conventions

Defining these rules has led to some stimulating no-
tational issues. In attempting to present the rules in
a clear way, we have been led to consider some novel
conventions for expressing features, particularly for
quantification. For reasons of both typography and
clarity, we want to reduce use of ellipses, columns,

and subscripts to describe a table as, for example,

b: (I1, . . . , Ik)→ (O1, . . . , O`)

P1 · · · Pm S1 · · · Sp

1 g11 · · · g1m t11 · · · t1p
...

. . .
...

. . .

n gn1 gnm tn1 tnp

Our table scheme notation uses the table itself as a
quantifier, and uses set elements as indexes rather
than number ranges. Uppercase italic variables de-
note sets; and differently named sets are always as-
sumed to be finite and disjoint. Lowercase italic vari-
ables denote indices ranging over sets of the same
name. The form

S

R xrs

represents a two-dimensional array (table) of items,
{xrs | r ∈ R and s ∈ S}. A san seriff1 identifier
denotes a fixed (throughout the scope of the rule)
element from the set of the same name. Thus, the
form

s

R xrs

represents a column, {xrs | r ∈ R}, and similarly for
rows.

Under these conventions, the table scheme from
Section 3 looks like

g
n,p

t
n,s.

.

.

N

1

I O
P S

b:

The use of ellipses 1 · · ·N on the left is not necessary,
but serves as an reminder that the rows are typically
numbered. That is, we usually take the set N to be
the first “N” numbers.

5.2. The rules

Some structural rules subsumed by the semantics,
must be implemented in the tool. For example, inter-
changing rows and columns is allowed since indices

1Where possible, we display these identifiers in red.

range over sets, not sequences. The underlying se-
mantics remain well defined because the order of e-
quations in a system is irrelevant. Similarly, renam-
ing variables is allowed under the usual rules of α
substitution2.

The rules fall into three groups, the first involving
both the decision and action table parts, the second
being operations on the action table part, and the
third being operations that affect the decision table
part.

Replacement

I O

pn
g

st

s

n

P
b:

n

|= tns ≡ uns ⇓

I O

pn
g

sn

P
b:

n

s

u

One term can be replaced by another term that is
(proven to be) equivalent in the underlying structure
(or theory). Recall that |= t ≡ u is a provable e-
quivalence in the underlying structure. In practice,
establishing equivalence would be done with a rewrit-
ing tool or proof assistant.

2Actually, behavior tables do not have free variables, so α
conversion is even simpler.

Decomposition

.

.

N

1

np
g. t tnt

I Ob:

ns

P S T

⇓

N

1

.

.
g

np
.

.

.
g

np
.

N

1

b : SO U

ns

1

t

T
I U

P
S

tnt

U TI
S P

b :2 T OU

Decomposition splits one table into two, both in-
heriting the same decision table. The compose oper-
ator connects the two tables to maintain the original
dependence among the signals. Interpreting the ta-
bles as functions on streams—and reading ‘∪ and ‘∩
as list operations—B1 ◦ B2 yields the system

B(I)
def
=O where
(O ∩ S) = B1(I ∪ T)
(O ∩ T) = B2(I ∪ S)

It is a background job of the table editor to maintain
the connection hierarchy as a byproduct of decompo-
sition. An upward composition transformation (⇑), if
formulated, would require conditions to exclude name
clashes and preserve well formedness. In using tables
for design derivation, one would typically decompose
tables rather than compose them.

This is by no means all there is to say about com-
position. This strong (in the sense of not being very
general) form of the Decomposition rule is essentially
a partitioning rule, allowing one to to impose hierar-
chy on designs.

Conversion

q

vjqj jg

b:

J t sp

I
p s

O

m
∀j, j′ ∈ J : gjp ≡ gj′p⋃
j∈J vjq = dom(q)

p q }vj :{ jg

q

case q

I
p s

O

t

b:

s J

This rule, allowing function to be moved between
the decision and action parts of a table, provides the
means to change the boundary between control and
architecture. The side conditions say that, within the
range indicated by J , the guards outside column q a-
gree, and the guards within column q are exhaustive.

Action collation

.

.

N

1

. g
np ns nr

I Ob:

tt

P rs

⇓
(defined)
(compatible)
(well formed)

.

.

N

1

. np
g

sn n

I Ob:

t r

P s

t s

r

The idea behind collation is that two, or several, com-
patible signals can be merged into one by instantiat-
ing don’t-cares. The ‘�’ operator denotes term-level

instantiation,

t � t′ =

 t if t′ = \
t′ if t = \
undefined otherwise

Compatible means that both variables must be com-
binational or both must be sequential. If both sig-
nals are combinational, an audit is required to assure
that the resulting system remains well formed, that
is, that instantiation does not introduce feedback.

Action identification

.

.

N

1

I O

.

P S
b:

g
np

t
ns

combinational m

.

.

N

1

. g
np

Ob: I
P S

t
ns

y nr

y

nr[/]y y

In terms of systems, this is the recursion rule, stat-
ing that y is equal, in a logical sense, to its defining
equation, and hence that one can be replaced for the
other. In fact, this rule can be applied on a row-
by-row basis, but we give the full-column version to
reflect the more typical case when a common subter-
m is being identified. If y were a sequential variable,
it would acquire the value rny in the next step and
so the replacement is invalid.

Action introduction

.

.

N

1

I O

.

P S
b:

g
np

t
ns

y fresh
well formed

m y unused

.

N

1

I

. rn y

O

.

P S
b:

y

g
np

t
ns

A new action column can be added (⇓) as long as
the signal name is not redundant and, in the case of
combinational signals, the action terms do not refer
to the signal being introduced.

Action grouping

.

.

N

1

np
g.

st

s
I Ob:

n

P

(both comb. or both seq.) m

.

.

N

1

. g
np

" "

1()

" "

2()t

1(s)

s

2(s)

n stn

I Ob:
P

Columns can be grouped and ungrouped as long as
the resulting columns are purely sequential or pure-
ly combinational. Thus, one canonical form for ac-
tion tables has just two columns. Recall that signal-
s names are nested identifiers; the notation ‘”1(s)”’
means that ungrouping transformations require ex-
plicit tuples in the header fields, and destructure
them in the obvious way. For instance, if s ≡ (a, b)
the ungrouped columns will be headed with a and b.

Action table entries need not be explicit tuples, al-
though they can be, because 1, 2, etc. are legitimate
operators.

Decision grouping

.

.

N

1
t ns

S

. n

I Ob:
p

,)(d epn p

compatible m

.

.

N

1
t ns

S

. dn

I
1()p 2()p

Ob:

p ne p

As with action tables, decision table columns can be
grouped into tuples. In contrast, the entries are val-
ues and the headers are terms, so explicit use of de-
tupling projectors is allowed in both.

Decision introduction

.

.

N

1

I O

.

P S
b:

g
np

t
ns

Q finite m

Q

nq

I O

t
ns

1
.
.

P
b:

g
np

N

.

S

One can introduce a new test with don’t-care criteria.
The underlying intent of this rule is its use in ad
hoc table constructions. A possible well formedness
restriction on this rule is that the resulting table be
safe from race conditions. Such a restriction can, in
principle, be applied when decisions are instantiated
(see just below), yielding a more general algebra.

Decision instantiation

q
I Ob:

s

P

hp t

S

m

q

f q

g

q

s

t s

t

I O
P

b:
S

.

.

.

N+1

1

hp

hp

Having introduced a new test to a behavior table,
instantiation is used to do case splitting. In the sim-
plest case, suppose that a \ appears in a decision table
entry. Then this rule provides for expanding that row
into enough duplicates to account for all the possible
values of the test. In the upward direction, the rule
gives us a way to combine rows whose actions are i-
dentitical. The notation fq ∪ gq anticipates allowing
for decision table entries to be sets of values, as is
seen in requirements specification languages.

I/O restriction

Input and output signals may be added to behavior
tables without concern so long as the inputs and out-
puts of the encapsulating system remain the same.
Such additions cannot introduce combinational feed-
back until they are used, and the decision/action in-
troduction rules check for well formedness.

Conversely, an unused I/O signal qualifies for re-
moval. We can remove input i to a behavior table if
no action or predicate contains i as a subterm. A be-
havior table output may be removed when is unused
in the surrounding interconnect expression.

6. Other aspects

This paper has developed a core algebra of behavior
table manipulation for architectural refinement. In

practice, the product of such manipulation is a de-
composition of the specification into subsystems for
synthesis into hardware or compilation into embed-
ded software components. This section briefly de-
scribes a number of other immediate issues and as-
pects entailed in the development of a design tool.

Figure 2 shows a derivation decomposing a be-
havior table into two components, one allocating t-
wo arithmetic operations to a single device. This
is an example of a system factorization, a funda-
mental transformation in the DDD algebra [5], and
the instance in the figure comes from an illustration
in Johnson’s Lfm97 presentation of behavior tables.
The example shows that the algebraic rules present-
ed in this paper are much more finely grained than
the transformations that typically would be used in
an interactive setting, but would instead serve as a
core set of rules from which larger-scale ones are com-
posed.

6.1. Stream semantics

Given a behavior table, one can construct an equiva-
lent sequential system by repeated applications of the
Decomposition and Conversion rules. Use Decompo-
sition to separate every column of the action table,
then Conversion to reduce each of the resulting tables
to a single row. The resulting nested system descrip-
tion can be flattened and simplified. Alternatively,
Decomposition can be generalized to simultaneous-
ly split tables into several components. To complete
the transformation, we must make initialization of
the sequential signals explicit. The resulting system
is

B(I)
def
=O where{
Xs = xs ! select(tests, alternatives)
Yc = select(tests, alternatives)

}
s∈S, c∈C

where the expression v ! S denotes an initialized
stream [5]. In DDD, this construction is reversed. An
initial behavior table is built from a system of stream
equations, each with a common selection combination
[7].

6.2. Bounded indirection

We have found an extension to the term-level syn-
tax called indirection [11] which is highly useful for
hardware applications and appears to be equally use-
ful in incremental specification development. If v is a
signal name, the term ∨v stands for a “reference” to
signal v; concretely, it is actually a token which can
later be used to select v. The term ∧w denotes that
selection. As an illustration, consider the table:

I → O

P s t u v S

1 ∨t f1 h1 \

2 ∨u f2 h2 \

3 \ f3 h3 ∧s

In essence, the term ∧s in the third row stands for
the term:

case s
∨t: : t
∨u: : u

Uses of indirection include the description of bidi-
rectional buses, other forms of implied selection, and
control branching. Of course, such use also neces-
sitates consistency audits over the whole table; for
instance, to verify that selected signals are compati-
ble and uniformly typed.

6.3. Data refinement

Another important set of rules for data refinemen-
t, will be presented in a future paper. Data refine-
ment involves the translation between levels of da-
ta abstraction. In our approach, the foundation for
data refinement lies in algebraic specification and e-
quational logic. Consequently, the initial connection
to the architectural rules presented here will lie in a
more general version of the Replacement rule.

However, replacement is only adequate for the s-
traightforward, combinational expansion of simple
representations; it does not address implementations
that involve sequential behavior. Our research on se-
quential decomposition [10] has not yet been reflected
in behavior tables.

6.4. Verification

We are also interested in integrating the derivation-
al formalism with property verification. One way to
approach this is to augment behavior tables with as-
sertions in a suitable temporal logic. Since we are
primarily interested in higher levels of specification,
“model checking” [12] these assertions would likely
require interaction. Considered as an algorithmic s-
tate machine, the table would provide contextual in-
formation making the proof process more agreeable.

6.5. Animation

Finally, animation, particularly symbolic execution,
would be an important feature of any practical be-
havior table tool. Consequently, we want to inte-
grate our tool with proof assistants—particularly ter-
m rewriters—not only to support replacement rules,
verification and type inference, but to provide in-
teractive simplification of terms in the fashion of
Moore’s symbolic spread sheets [9].

References

[1] Christopher R. Clare. Designing Logic Systems
Using State Machines. McGraw-Hill, 1973.

[2] Constance Heitmeyer, Alan Bull, Carolyn
Gasarch, and Bruce Labaw. SCR*: a toolset
for specifying and analyzing requirements. In
Proceedings of the Tenth Annual Conference on
Computer Assurance (COMPASS ’95), pages
109–122, 1995.

[3] D. N. Hoover, David Guaspari, and Polar Hu-
menn. Applications of formal methods to spec-
ification and safety of avionics software. Con-
tractor Report 4723, National Aeronautics and
Space Administration Langley Research Cen-
ter (NASA/LRC), Hampton VA 23681-0001,
November 1994.

[4] Steven D. Johnson. Synthesis of Digital Design-
s from Recursion Equations. MIT Press, Cam-
bridge, 1984.

[5] Steven D. Johnson. Manipulating logical organi-
zation with system factorizations. In Leeser and
Brown, editors, Hardware Specification, Veri-
fication and Synthesis: Mathematical Aspects,
volume 408 of LNCS, pages 260–281. Springer,
July 1989.

[6] Steven D. Johnson. A tabular language for sys-
tem design. In C. Michael Holloway and Kelly J.
Hayhurst, editors, Lfm97: Fourth NASA Lang-
ley Formal Methods Workshop, September 1997.
NASA Conference Publication 3356, in press.

[7] Steven D. Johnson and Bhaskar Bose. A system
for mechanized digital design derivation. In I-
FIP and ACM/SIGDA International Workshop
on Formal Methods in VLSI Design, 1991. Avail-
able as Indiana University Computer Science De-
partment Technical Report No. 323 (rev. 1997).

[8] Nancy G. Leveson, Mats Per Erik Heimdahl,
Holly Hildreth, and Jon Damon Reese. Re-
quirements specifiation for process-control sys-
tems. IEEE Transactions on Software Engineer-
ing, 20(9):684–707, September 1994.

[9] J Strother Moore. Symbolic simulation:
an ACL2 approach. In G. Gopalakrishnan
and P. Windley, editors, Formal Methods in
Computer-Aided Design (FMCAD’98), pages
334–350. Springer LNCS 1522, 1998.

[10] Kamlesh Rath, Venkatesh Choppella, and
Steven D. Johnson. Decomposition of sequential
behavior using interface specification and com-
plementation. VLSI Design Journal, 3(3-4):347–
358, 1995.

[11] M. Esen Tuna, Kamlesh Rath, and Steven D.
Johnson. Specification and synthesis of bounded
indirection. In Proceedings of the Fifth Great
Lakes Symposium on VLSI (GLSVLSI95), pages
86–89. IEEE, March 1995.

[12] Y. Xu, E. Cerny, X. Song, F. Corella, and O. Ait
Mohamed. Model checking for a first-order tem-
poral logic using multiway decision graphs. In
CAV’98. Springer, 1998.

FIB: (go, in) → (done*, v)

now u=0 now done* u v w

1 \ done* ¬go in 0 1

0 1 " u=0 \ v \
0 0 2 false u-1 v w

2 \ done* u=0 u w v+w

action introduction ⇒

FIB: (go, in) → (done*, v)

now u=0 now done* u v w x* y* z* ao*

1 \ done* ¬go in 0 1 \ \ \ P
0 1 " u=0 \ v \ \ \ \ P
0 0 2 false ao v w sub u 1 P
2 \ done* u=0 u w ao add v w P

where P =(case x* y*+z* y*-z*)

decomposition ⇒

FIB: (go, in, ao) → (done*, v, now, u, w, x*, y*, z*)

now u=0 now done* u v w x* y* z*

1 \ done* ¬go in 0 1 \ \ \
0 1 " u=0 \ v \ \ \ \
0 0 2 false ao v w sub u 1

2 \ done* u=0 u w ao add v w

ALU: (go, done*, v, u, now, w, x*, y*, z*) → (ao*)

now u=0 ao*

1 \ (case x y+z y-z)

0 1 (case x y+z y-z)

0 0 (case x y+z y-z)

2 \ (case x y+z y-z)

output restriction ⇒ input restriction ⇒

FIB: (go, in, ao) → (done*, v, x*, y*, z*)

now u=0 now done* u v w x* y* z*

1 \ done* ¬go in 0 1 \ \ \
0 1 " u=0 \ v \ \ \ \
0 0 2 false ao v w sub u 1

2 \ done* u=0 u w ao add v w

ALU: (u, now, x, y, z) → (ao*)

now u=0 ao*

1 \ (case x y+z y-z)

0 1 (case x y+z y-z)

0 0 (case x y+z y-z)

2 \ (case x y+z y-z)

decision generalization ⇒

ALU: (u, now, x, y, z) → (ao*)

now u=0 ao*

1 \ (case x y+z y-z)

0 \ (case x y+z y-z)

2 \ (case x y+z y-z)

decision generalization ⇒

ALU: (u, now, x, y, z) → (ao*)

now u=0 ao*

\ \ (case x y+z y-z)

decision introduction ⇒

ALU: (u, now, x, y, z) → (ao*)

x now u=0 ao*

\ \ \ (case x y+z y-z)

conversion ⇒

ALU: (u, now, x, y, z) → (ao*)

x now u=0 ao*

add \ \ y+z

sub \ \ y-z

decision elimination ⇒

Figure 2: A factorization from [6]

ALU: (u, now, x, y, z) → (ao*)

x ao*

add y+z

sub y-z

input restriction ⇒

ALU: (x, y, z) → (ao*)

x ao*

add y+z

sub y-z

